top of page

​主な論文

(原著論文)

  1. Itoh R, Takahashi H, Toda K, Kuroiwa H, Kuroiwa T (1996) Aphidicolin uncouples the chloroplast division cycle from the mitotic cycle in the unicellular red alga Cyanidioschyzon merolae. Eur J Cell Biol 71: 303-310

  2. Itoh R, Takahashi H, Toda K, Kuroiwa H, Kuroiwa T (1997) Checkpoint control on mitochondrial division in Cyanidioschyzon merolae. Protoplasma 196: 135-141

  3. Itoh R, Takahashi H, Toda K, Kuroiwa H, Kuroiwa T (1997) DNA gyrase involvement in chloroplast-nucleoid division in Cyanidioschyzon merolae. Eur J Cell Biol 73: 252-258

  4. Itoh R, Toda K, Takahashi H, Takano H, Kuroiwa T (1998) Delta-9 fatty acid desaturase gene containing a carboxyl-terminal cytochrome b5 domain from the red alga Cyanidioschyzon merolae. Curr Genet 33: 165-170

  5. Itoh R, Takano H, Ohta N, Miyagishima S, Kuroiwa H, Kuroiwa T (1999) Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae. Plant Mol Biol 41: 321-337

  6. Itoh R, Fujiwara M, Yoshida S (2001) Kinesin-related proteins with a mitochondrial targeting signal. Plant Physiol 127: 724-726

  7. Itoh R, Fujiwara M, Nagata N, Yoshida S (2001) A chloroplast protein homologous to the eubacterial topological specificity factor MinE plays a role in chloroplast division. Plant Physiol 127: 1644-1655

  8. Itoh R, Yoshida S (2001) Reduced expression of the Arabidopsis minE gene affects size and number of chloroplasts. Cytologia 66: 427-430

  9. Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S, Møller SG (2004) Chloroplast division site placement requires dimerisation of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci 117: 2399-2410

  10. Itoh RD, Takechi K, Hayashida A, Katsura S, Takano H (2005) Two minD genes in Physcomitrella patens are functionally redundant. Cytologia 70: 87-92

  11. Itoh RD, Nakahara N, Asami T, Denda T (2005) The leaf morphologies of the subtropical rheophyte Solenogyne mikadoi and its temperate relative S. bellioides (Asteraceae) are affected differently by plant hormones and their biosynthesis inhibitors. J Plant Res 118: 181-186

  12. Hayashida A, Takechi K, Sugiyama M, Kubo M, Itoh RD, Takio S, Fujita T, Hiwatashi Y, Hasebe M, Takano H (2005) Isolation of mutant lines with decreased numbers of chloroplasts per cell from a tagged mutant library of the moss Physcomitrella patens. Plant Biol 7: 300-306

  13. Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, Itoh RD (2008) The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol 49: 345-361

  14. Fujiwara MT, Sekine K, Yamamoto YY, Abe T, Sato N, Itoh RD (2009) Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana. Plant Cell Physiol 50: 1116-1126

  15. Fujiwara MT, Li D, Kazama Y, Abe T, Uno T, Yamagata H, Kanamaru K, Itoh RD (2009) Further evaluation of the localisation and functionality of hemagglutinin epitope- and fluorescent protein-tagged AtMinD1 in Arabidopsis thaliana. Biosci Biotechnol Biochem 73: 1693-1697

  16. Kojo KH, Fujiwara MT, Itoh RD (2009) Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Biosci Biotechnol Biochem 73: 2632-2639

  17. Hossain KK, Itoh RD, Yoshimura G, Tokuda G, Oku H, Cohen MF, Yamasaki H (2010) Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russ J Plant Physiol 57: 222-232

  18. Itoh RD, Yamasaki H, Septiana A, Yoshida S, Fujiwara MT (2010) Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. Physiol Plant 139: 144-158

  19. Fujiwara MT, Hashimoto H, Kazama Y, Hirano T, Yoshioka Y, Aoki S, Sato N, Itoh RD, Abe T (2010) Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1-GFP in Arabidopsis thaliana. Protoplasma 242: 19-33

  20. Itoh RD, Fujiwara MT (2010) Regulation of leucoplast morphology in roots: interorganellar signaling from mitochondria? Plant Signal Behav 5: 856-859

  21. Fujiwara MT, Yoshioka Y, Hirano T, Kazama Y, Abe T, Hayashi K, Itoh RD (2012) Visualization of plastid movement in the pollen tube of Arabidopsis thaliana. Plant Signal Behav 7: 34-37

  22. Hara T, Kobayashi E, Ohtsubo K, Kumada S, Kanazawa M, Abe T, Itoh RD, Fujiwara MT (2015) Organ-level analysis of idioblast patterning in Egeria densa Planch. leaves. PLOS ONE 10: e0118965

  23. Fujiwara MT, Kobayashi E, Kanazawa M, Itoh RD (2015) Observation of colourless idioblasts in Egeria densa leaves by conventional UV-excitation fluorescence microscopy. Cytologia 80: 131-132

  24. Fujiwara MT, Kojo KH, Kazama Y, Sasaki S, Abe T, Itoh RD (2015) The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis. Front Plant Sci 6: 823. doi: 10.3389/fpls.2015.00823

  25. Morita R, Nakagawa M, Takehisa H, Hayashi Y, Ichida H, Usuda S, Ichinose K, Abe H, Shirakawa Y, Sato T, Fujiwara M, Itoh R, Abe T (2017) Analysis of a temperature sensitive virescent mutant of rice induced by heavy-ion beam. RIKEN Accel Prog Rep 50: 272

  26. Morita R, Nakagawa M, Takehisa H, Hayashi Y, Ichida H, Usuda S, Ichinose K, Abe H, Shirakawa Y, Sato T, Fujiwara MT, Itoh RD, Abe T (2017) Heavy-ion beam mutagenesis identified an essential gene for chloroplast development under cold stress conditions during both early growth and tillering stages in rice. Biosci Biotechnol Biochem 81: 271-282. doi: 10.1080/09168451.2016.1249452

  27. Fujiwara MT, Yasuzawa M, Sasaki S, Nakano T, Niwa Y, Yoshida S, Abe T, Itoh RD (2017) The Arabidopsis minD mutation causes aberrant FtsZ1 ring placement and moderate heterogeneity of chloroplasts in the leaf epidermis. Plant Signal Behav 12: e1343776. doi: 10.1080/15592324.2017.1343776

  28. Itoh RD, Ishikawa H, Nakajima KP, Moriyama S, Fujiwara MT (2018) Isolation and analysis of a stromule-overproducing Arabidopsis mutant suggest the role of PARC6 in plastid morphology maintenance in the leaf epidermis. Physiol Plant 162: 479–494. doi: 10.1111/ppl.12648

  29. Fujiwara MT, Yasuzawa M, Kojo KH, Niwa Y, Abe T, Yoshida S, Nakano T, Itoh RD (2018) The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis. PLOS ONE 13: e0192380

  30. Fujiwara MT, Sanjaya A, Itoh RD (2019) Arabidopsis thaliana leaf epidermal guard cells: a model for studying chloroplast proliferation and partitioning in plants. Front Plant Sci 10: 1403. doi: 10.3389/fpls.2019.01403

  31. Ishikawa H, Yasuzawa M, Koike N, Sanjaya A, Moriyama S, Nishizawa A, Matsuoka K, Sasaki S, Kazama Y, Hayashi Y, Abe T, Fujiwara MT, Itoh RD (2020) Arabidopsis PARC6 is critical for plastid morphogenesis in pavement, trichome, and guard cells in leaf epidermis. Front Plant Sci 10: 1665. doi: 10.3389/fpls.2019.01665

  32. Itoh RD, Nakajima KP, Sasaki S, Ishikawa H, Kazama Y, Abe T, Fujiwara MT (2021) TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis. Plant J 107: 237–255. doi: 10.1111/tpj.15287

  33. Sanjaya A, Muramatsu R, Sato S, Suzuki M, Sasaki S, Ishikawa H, Itoh RD, Kanamaru K, Ohbu S, Abe T, Kazama Y, Fujiwara MT (2021) Arabidopsis EGY1 is critical for chloroplast development in leaf epidermal guard cells. Plants 10: 1254. doi: 10.3390/plants10061254

  34. Sanjaya A, Muramatsu R, Sato S, Suzuki M, Sasaki S, Ishikawa H, Fujii Y, Asano M, Itoh R, Kanamaru K, Ohbu S, Abe T, Kazama Y, Fujiwara M (2022) Argon-ion-induced mutations in Arabidopsis EGY1 gene affect chloroplast development in leaf guard cells.  RIKEN Accelerator Progress Report 55: S30

  35. Yamagishi A, Egoshi Y, Fujiwara MT, Suzuki N, Taniguchi T, Itoh RD, Suzuki Y, Masuyama Y, Monde K, Usuki T (2023) Total synthesis, absolute configuration, and phytotoxic activity of foeniculoxin. Chem Eur J 29: e202203396. doi: 10.1002/chem.202203396

  36. Matsuoka K, Kubotera H, Miyazaki R, Moriyama S, Fujiwara MT, Itoh RD (2024) The tgd5 mutation affects plastid structure and causes giant lipid droplet formation in trichomes of Arabidopsis. Int J Plant Biol 15: 46–53. doi: 10.3390/ijpb15010004  NEW  

その他 16 編,計 52 編​​​

(総説・書籍)

  1. 伊藤 竜一 (1998) ミトコンドリアはどうやって増えるのか? 遺伝 52: 20–26

  2. 黒岩 常祥,伊藤 竜一 (1998) ミトコンドリアの構造と機能 ― 太古の細菌から ―.小児内科 30: 1109–1112.

  3. Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria.  Int Rev Cytol 181: 1–41.

  4. Itoh R, Kuroiwa T (1999) Mechanism and evolution of organelle division. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments, pp. 447-463. Kluwer Academic Publishers, Dordrecht, the Netherlands

  5. Itoh R (2003) Conservative and innovative systems of chloroplast division. Rec Res Dev Plant Mol Biol 1: 113-125

  6. 伊藤 竜一 (2005) 「細胞小器官」,「真核細胞の起源・進化」,「真核細胞」,「モデル生物」,「葉緑体」の5項目,8ページを担当.石川 統,黒岩 常祥,永田 和宏(編)細胞生物学事典.朝倉書店,東京

  7. Fujiwara MT, Hashimoto H, Yoshida S, Itoh RD, Niwa Y, Sato N (2006) Structures and morphologies of plant plastids. In: Fujiwara M, Sato N, Ishiura S (eds) Frontiers in Life Sciences, pp. 91-109. Research Signpost, Kerala, India

  8. 伊藤 竜一,Khurshida HK,徳田 岳,山崎 秀雄 (2006) 緑の植物に通う赤いタンパク―ヘモグロビンの謎.琉球大学21世紀COEプログラム編集委員会(編)美ら島の自然史―サンゴ礁島嶼系の生物多様性,pp. 211-224.東海大学出版会,東京

  9. 高野 博嘉,伊藤 竜一 (2008) 第3章 植物細胞.黒岩 常祥,三角 修己,高野 博嘉,伊藤 竜一,松永 幸大(著)細胞 ―基礎分子生物学シリーズ 第3巻―,pp. 63-123.朝倉書店,東京

  10. Fujiwara MT, Itoh RD, Yoshioka Y (2008) A revised model for the nuclear control of plastid division. In: Fujiwara M, Tanaka K, Takahashi H (eds) Adaptive Gene Regulations - From Microorganisms to Organelles, pp. 59-74. Research Signpost, Kerala, India

  11. Itoh RD (2008) Mitochondrial morphology and dynamics in higher plants: beyond the prokaryotic and yeast machineries. In: Fujiwara M, Tanaka K, Takahashi H (eds) Adaptive Gene Regulations - From Microorganisms to Organelles, pp. 75-94. Research Signpost, Kerala, India

  12. Yamasaki H, Itoh RD, Bouchard JN, Dghim AA, Hossain KK, Gurung S, Cohen MF (2010) Nitric oxide synthase-like activities in plants. In: Foyer CH, Zhang H (eds) Annual Plant Reviews Volume 42: Nitrogen Metabolism in Plants in the Post-Genomic Era, pp. 103-125. Blackwell Publishing Ltd

  13. 伊藤 竜一 (2013) 葉緑体の知られざる生活.琉球大学(編)知の源泉 ― やわらかい南の学と思想5,pp. 272-287.沖縄タイムス社,那覇

  14. Itoh RD (2023) Tubular extensions of plant organelles and their implications on retrograde signaling. J Biol Res (Italy) 96: 11724. doi:10.4081/jbr.2023.11724  NEW  

  15. Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF (2024) Spatiotemporal characteristics determining the multifaceted nature of reactive oxygen, nitrogen, and sulfur species (RONSS) in relation to proton homeostasis. Antioxid Redox Signal  (ahead of print) doi: 10.1089/ars.2023.0544  NEW  

bottom of page